Infrared Studies of Terpenoid Compounds. Part I. 217. Hydrogen Bonding in Cedrelone and Related Compounds.

By T. CAIRNS, G. EGLINTON, and S. G. MCGEACHIN.

Cedrelone (I; R = H) is a natural product whose chemistry and precise stereochemistry have been firmly established. Spectra of solutions of cedrelone and related compounds characterize the intramolecular hydrogen bonds closing the planar five-membered diosphenol ring and a twisted sevenmembered ring. Additional data illustrate the constancy of both ν (CO) and $\nu(OH)$ when certain intramolecular situations are held relatively constant.

THE presence or absence of intramolecular hydrogen bonding in natural products can frequently be inferred from an examination of the hydroxyl stretching frequencies obtained with dilute solutions in inert solvents.¹ Such information can have considerable diagnostic value but there are few instances in the literature where the spectral data refer to molecules of precisely known stereochemistry. The complete structure of the degraded C₂₆ triterpene cedrelone 2 (I; R = H) has been recently determined (as the iodoacetate) by X-ray crystallography 3 and the present work deals with spectra-structure correlations for cedrelone

and related compounds (I to VII). Hydroxyl, carbonyl, and carbon-carbon double bond absorptions are listed in the Tables and illustrated in the Figures, but emphasis is placed on the various types of intramolecular hydrogen bond encountered.

- ¹ Cole and Muller, *J.*, 1959, 1224; Eglinton, *Unicam Spectrovision*, 1960, **9**, 1. ² Hodges, McGeachin, and Raphael, *J.*, 1963, 2515.
- ³ Grant, Hamilton, Hamor, Robertson, and Sim., J., 1963, 2506.

EXPERIMENTAL

Measurements.—Spectra were recorded linearly in $cm.^{-1}$ as percentage transmission with a Unicam S.P. 100 double-beam infrared spectrophotometer equipped with an S.P. 130 sodium chloride prism-grating double monochromator [3000 lines per inch (2150-3650 cm.⁻¹) and 1500 lines per inch (650-2150 cm.⁻¹)] operated under vacuum. The calibration was checked against the spectrum of water vapour after each group of measurements. The hydroxyl and carbonyl absorptions were scanned at 4.6 and 8.0 cm.⁻¹ per min., respectively. Frequency measurements for the "free" and intrabonded hydroxyl and carbonyl bands are believed to be accurate to ± 1 cm⁻¹. The linearity of the percentage transmission scale was checked by Shrewsbury's procedure,⁴ and the intensities were measured on bands of not less than 10%transmission. The theoretical spectral slit-width, computed from tables supplied by Unicam Instruments Ltd., was 5.5 cm.⁻¹ at 3600 cm.⁻¹, 4.5 cm.⁻¹ at 3350 cm.⁻¹, and 3.4 cm.⁻¹ at 1700 cm.⁻¹. Unless specified otherwise, peaks were symmetrical; the apparent half-band widths, Δv_{b}^{a} , are quoted to the nearest integer; where necessary they were determined by reflection of the undisturbed wings of the unsymmetrical bands. Intensities are given as apparent extinction coefficients, ε^{a} , (l. mole⁻¹ cm.⁻¹) rounded to the nearest 5 units and measured from a solvent-solvent base-line superimposed on the record of the spectrum of the solution (determined with solvent in the reference beam).

Materials.—AnalaR carbon tetrachloride was used without further purification. AnalaR chloroform was dried several times by passage through a column of blue silica gel before direct use. Spectroscopic grade bromoform was used without further purification. The carbon tetrachloride-ether solutions were prepared by using sodium-dried ether which was rapidly dispensed to avoid absorption of atmospheric moisture; cell paths of 2 mm. (hydroxyl region) and 0.5 mm. (carbonyl region) were employed. The preparations of compounds (I) to (VII) have been described elsewhere.²

The arabic numerals used in the text, Tables and Figures refer to the compounds examined and related to them as follows (Table 1 should be consulted for the relevant Roman numerals):

- 1. Cedrelone methyl ether
- 2. Cedrelone acetate
- 3. 1,2-Epoxycedrelone acetate 4. 1,2-Dihydrocedrelone
- acetate
- 5. Hexahydrocedrelone acetate
- 6. Cedrelone
- 7. 1,2-Epoxycedrelone
- 8. 1,2-Dihydrocedrelone
- 9. Hexahydrocedrelone
- 10. Isocedrelone diacetate.
- 11. 23-Acetylisocedrelone diacetate
- 12. 21-Acetylisocedrelone
- diacetate
- 13. Isocedrelone acetate
- 14. Isodihydrocedrelone acetate
- 15. Isocedrelone
 - 23. Methyl neoisocedrelonate

RESULTS AND DISCUSSION

The results are detailed in Tables 1 and 2 and summarized in Table 3. One important structural feature of cedrelone and its close relatives (I) is that ring c is held in the boat conformation. Other related compounds (II) have the more favoured chair conformation in ring c and are referred to as isocedrelones.

In both cedrelone methyl ether (I; R = Me) and cedrelone acetate (I; R = Ac) the presence of a conjugated enone system in ring A and in ring B is characterized by a single, intense, symmetrical absorption at ca. 1700 cm.⁻¹ (in CCl₄; Table 1, compounds 1 and 2). The high extinction coefficient of this absorption accords with the presence of two carbonyl groupings. Introduction of an epoxide grouping at positions 1 and 2 as in 1,2-epoxycedrelone acetate (Table 1, compound 3) splits the carbonyl absorption into two well-defined bands: the higher-frequency band at 1722 cm.⁻¹ (in CCl_{a}) is attributed to the carbonyl adjacent to the epoxide group in ring A, and the lower frequency absorption at 1708 cm.⁻¹ (in CCl_{a}) is assigned to the ring B carbonyl. Saturation of the double bond in ring A (compounds 4 and 5) slightly reduces the absorption frequencies of both carbonyl groups as compared with those observed for the 1,2-epoxy compound.⁵ Even so, the ring A carbonyl frequency for the 1,2-dihydro-compounds is somewhat higher (1714 cm.⁻¹ in

⁴ Shrewsbury, Unicam Spectrovision, 1958, 6, 1.

⁵ Lehmann, Schaffner, and Jeger, Helv. Chim. Acta, 1962, 45, 1031.

- 16. Isodihydrocedrelone
- 17. Norketone (III)
- 18. Norketone (IV); 15-Oxo 19. Norketone (IV; R = H)
- 20. Norketone acetate (IV;
- R = Ac)
- 21. Isocedrelonic acid
- 22. Isocedrelonic acid lactone

TABLE 1.

			Species	enol OAc	enol OAc enol OAc	enol OAc			enol OAc	UAC (U(18)) enol OAC	OAc (C ₍₁₅)) Ac (C ₍₂₃))	enol OAc OAc (C ₍₁₈₎) Ac (C ₍₁₃))	enol OAc		Pine n CO	Ring _D CO	,	UAc(C(15)) Feter CO	Lactone CO	Ester CO	King _D CO	ot measured.	the individua	
	,		4	1	230 500	440			490	420 430	395	350 290 920	470	200	760	800	2	655 425	445	1	1	2 	ns of t	
	bands	OHOL	$\Delta \nu_{\mathbf{f}^{\mathbf{a}}}$	1	1722	17			25	20 20	89 1993 1995	20 29 26	18		16	14	5	212	25	22	22	mm.	ributic	
	Additional carbonyl		لم	1	1763 1764	1763			1759 a	1760 4	1729 1683	1760 a 1730 1688 t	1764		1761 +	1755 +	10001	1703 0	1743	1735 †	1735 †	CHCl ₃ 0-51	ce the cont	ted as m
			4	500	460 550	515			620	960 680	560 740	610 490	11		ĺ		100	67.1	450	1	1	mm., (ve, sind	calcula
			Δν ₁ a	12	14	14			15	15	10	14 19	15	•	Ξ	: 1	00	28	10	16	16	ccl4 5	centati	; ⊉‡" o
			م	1770	1770 1770	1770			1766	1743	1743 b 1688sh	1767 1744 1692ch	1771		1758 +		10101	1705 0	1753	1742 +	1742 †	paths: for	s are more t	n shoulder
nds.			5	940 	340 655	625	770	440 420	705	750		920	460 350	340	450 750	800	290	655				, Cell	e value	nds. s
e and related compou	Ring B carbonyl	HOI	∆v <mark>‡</mark> a	8	20 18	22	18	1861	19	14		26	22	25	17 16	14	26	31				1 cm1	n these	ric dai
		0	٩	1692 † 	1705 b 1702	1701 6	1678 b	1677	1694 †a	1693 † b		1688 †	1667 b 1665	1619 a	1620	1755 +	1714 6	1/38 1				∆v _i a are in	ns based or	t asymmet
		od,	6	1290 870	$680 \\ 740$	750	570 570	550 565	1060	1120		1330	1		540		385	725				v and	relation	wing o
			∆v _‡ a	118	10	12	15	13 13	13	10		14	20 15	2	==	: 1	17	23				ation.	and cor	urbea
cedrelon			لم	1696 + 1701 + 1701	1705 5	1705 6	1678 5	1678	1698 †a	1699 †6		1697 †8	1672	1622	1623 b		1718 5	1742 †				wn concenti) is quoted a	ig the unaisi
ls of	Ring A carbonyl		6	940	320 520	520	104	465 440	705	750		920	475	320	420 480	525	495	470 620	520	1		unkno	vła, ca	by usin
ption		CHCI	Δvia	20	13	16	8	821	19	14		26	18	55	17	21	23	52 57 57	20	21		and of	max, A	ilated
l absor			 .	1692 +	1721 b 1714sh	1714sh	1685sh	1713 1712	1694 †a	1693 †6		1688†	1514	1685 ab	1713 1623	1683	1683	1677 b	1677	1683		saturated	of data (Δv acalci
bony		cci,	(ej	$1290 \\ 870$	620 630	600	540	665 645	1060	1120		1330	1	1	560	1	670	620	470	1		is were	one set	лd.
Car			Δv ₁ a	18	01 11	10	20	10 6	13	10		14	15	:	11	21	14	12 17	12	18		olution	only	ULIC Day
			٩	1696 + 1701 +	1722 b 1720 b	1720 6	1695 b	1717	1698 †4	1699 †6		1697 † 6	1699	1699 a	1718	1	1691	1688 b	1686	1690		but some s	frequency;	a Asymme
		Additional	features		1,2-Epoxy 1.2-dihvdro	1,2,20,21,22,23- hexahvdro	1 9 2020	1,2-epoxy 1,2-dihydro 1,2,20,21,22,23-	hexahydro	23-acetyl		21-acetyl	1.9 dihudro		1,2-dihydro	15-keto						range 1 to 20 mm,	erimposed at this	ot be observed.
			1 2 2						Ac	Ac		Ac	н	H	Η							r in the	idns spu	is cann
		stem	R	Me Ac	Ac	Ac	H	снн	Ac	Ac		Ac	Ac	H	н		н·	Ac				nerally	re ban	orption
		Sys	Formula	Ι					II						111			Λ	Ņ	IΙΛ		olarities ge	Two or mo	ching abst
		bem	No.	7	n 4	e G	9 t	- 00 01	10	11		12	13	15	16 15	18	19	32	22	23		Ŵ	+	stret

			6	þ	<u></u> 20)	30)	95) 80)	20	(0)	20) 10)	() ()	<u>80)</u>	25)	<u>[</u>]	(j. j. j	1			ange
	spue	(in the second s	ν, 8	۔ ۱	3	() (1) 2 2 2 2	20 88	2) 2)	00 60	20 68	ت آ	0) (2)	4) (2) (2)	1 50	1			no ch
	uble bo	5	٩	ا ج	5	5 5	di o t	-0	9 9	4 t	<u>्</u>) œ	<u>ه</u> 0	ي ه	~~ 	-			ide but ref. 13)
	pon doi		La	162	161	161	161	163	162	162	163	163	163	162	165	163			rere ma ip (cf. 1
	on-carl		69	ΜΛ	:	1	W (145)	(140)	(160)	(150)	(125)	(100)	м		18			1	tions w
ŝ	Carb	เอิ	∆v₄ª	, ⁴ 8 Å	;	1	(35)	<u>13</u>	(10)	(10)	(18)]1	1		1 =			1	. Dilu the fur
punodi			<u>م</u>	(1654)	(1017)	(1615)	1623	1629	1627	1626	1639	1639	1630	0.00	1658			1629	0.51 mm. modes of
l com		;	4										9 5	1	200	80	95		CHCl,
elated		CHCI,	$\Delta v_{\frac{1}{2}a}$	•									195	۔ ظ	105	126	52		5 mm., the str
nd re	lroxyl		L ~										11 5	110 110	118 + a	140	604 a		one of
one a	g D hyc		· .										ന് 1	ະດີ ຄ 1	ຳຕັ ເວິ	10 33	۳ ۱)=C): for the form
edrel	Rin	-	,†8 € ⁸										50)	- ()20)	1 11 8 80	76 II	1		m; ν(C is assig
s of c		ເວົ	Ą										2	2	0.00	·	~		Cl _a 2 m which
ption			[~										3460	3450	3466	3470	3602		CHCI,
tbsor			69				00	95	06	85				-	200 200		80	ĝ I	Cl, 2 cn n1 (in
s puo	yl	CHCI	$\Delta \nu_{\mathbf{f}^{\mathbf{a}}}$	•			РЧ	282	64	60				;	105		58	202 801	: for C 1600 cr
ıble b	hydroxy		L A				2495	3428	3430	3430				- 1 0 1 1 0	3418 74 3418 4	-	3525 b	3593 3520	, v(OH) nd near
n dou	Ring B		E3				115	120	125	120					190		1	9 1 1	ll paths gth bar
arbo		រុប្រុ	∆v₁ª	•			LF	285 285	68	89				4	88		29	16 85	1. Cel m stren
arbon-c			La				3417	3418	3418	3420				10110	3415° 3415b		3530	3595 3546 a	see Table to mediu
Hydroxyl and car		Additional sturation	features		2-epoxy	,2-dîhydro	l,2,20,21,22,23-hexahydro	"2-epoxy	,2-dihydro	,2,20,21,22,23-hexahydro	3-acetvl	21-acetyl		l,2-dihydro	.2-dihvdro				pproximate. For symbols 1, and others, have a weak
			R		1	-		1	-	۲ ۲	Ac	Ac 2	Н	H	HH				is are a npound
		tem	ч	Me	Ac	Ac	Ac	H	H	Η	Ac	Ac	Ac	Ac	ĽΗ	н			tenthesi d. Cor
		Sys	Formula	I						11	11					ΔI	2		ues in par acountered
		hand	No.	I	ŝ	4	10 4	; [~	œ	٩	21	12	2	4:	16	19	21	53 53 53	Val was ei

TABLE 2.

TABLE 3.

Assignments for stretching absorptions due to carbonyl and hydroxyl functions.

	Averag	ge values		
Grouping	v (cm.⁻¹)	$\Delta \nu * (\text{cm.}^{-1})$		
3-Ketone in ring A	1720	6		
3-Ketone in ring A, 1,2-epoxide	1722	2		
3-Ketone in ring A, $\Delta^{1,2}$ and six-membered ring B	1698	9		
3-Ketone in ring A, $\Delta^{1.2}$ and five-membered ring B	1689	9		
7-Ketone of diosphenol	1679	1		
7-Ketone of diosphenol and bonding by 15-hydroxyl	1622	3		
7-Ketone of diosphenol methyl ether	1696	4		
7-Ketone of diosphenol acetate, cedrelones	1704	3		
7-Ketone of diosphenol acetate, isocedrelones	1698	5		
7-Ketone of diosphenol acetate and bonding by 15-hydroxyl	1672	6		
6-Acetate of diosphenol acetates, ring B	1769	7		
15-Acetate, ring D	1743	14		
6-Hydroxy of diosphenol in ring B	3416	8		
15-Hydroxyl in ring D, bonding to 7-ketone	3460	45		
All data drawn from Tables 1 and 8 * A. Tomi-	al maniation	and an east (CO)		

All data drawn from Tables I and 2. * $\Delta \nu = \nu_{\rm CC14} - \nu_{\rm CHC13}$. Typical variation amongst $\nu(\rm CO)$ values ± 3 cm.⁻¹.

 $CHCl_{a}$), than has been previously described for a 4,4-dimethyl-3-oxo-5 α -system.⁶ Lehn, Levisalles, and Ourisson ⁷ conclude that ring A in such systems exists as a deformed chaira decision reached after taking into account the interactions between 1,3-diaxial methyl groups. The X-ray analysis³ of cedrelone iodoacetate, however, revealed that ring A possessed a boat-like conformation rather than the alternative half-chair; the former presumably minimizes the non-bonded interactions between the 4-methyl groups and the bulky 6-substituent. The same argument should apply to cedrelone and its simple derivatives whether the particular molecule is in a crystal lattice or is surrounded by relatively inert solvent molecules. There is no marked change in the carbonyl absorptions (Table 1) on passing from carbon tetrachloride to chloroform solution, only the expected lowering in frequency (by 5-10 cm⁻¹) and the increased breadth of the bands.⁸ Preferential solvation of the α -epoxy-group may explain the unusually small shifts recorded for the two compounds having this grouping.

In the spectrum of cedrelone itself (compound 6) there are two peaks in the carbonyl region (1695 and 1678 cm.⁻¹ in CCl_4 ; Table 1) and one band in the hydroxyl region (3417 cm.⁻¹ in CCl₄; Table 2). The data for dihydrocedrelone (compound 8; Fig. 1) reveal that the higher band, that at 1695 cm.⁻¹, in the spectrum of cedrelone is to be attributed to the ring A carbonyl. Incidentally, this absorption moves about 9 cm.⁻¹ to lower frequency when ring B is five-membered, presumably as a result of bond-angle changes at the A/B ring junction.

The carbonyl and hydroxyl absorptions of the diosphenol system in cedrelone and derivatives are typically both low in frequency and insensitive to solvation.⁸ A planar projection of a Dreiding model of dihydrocedrelone (compound 8) is illustrated in Fig. 2. The intramolecular diosphenol hydrogen bond is in the form of a planar ring with an $O \cdots O$ distance of ca. 2.8 Å and the angle subtended at the carbonyl oxygen atom by the proton of the hydroxyl group is 80° . This is a particularly well-defined conformation and the intra-bonded $\nu(OH)$ absorption is unusually narrow.⁹

We now turn to the isocedrelones (II), which have the more favoured chair conformation in ring c. In the case of isocedrelone diacetate (compound 10) the enone systems in rings A and B are characterized by a very strong absorption at 1698 cm.⁻¹ (in CCl_4 ; Table 1). Replacement of one of the acetate groupings by a hydroxyl group (compound 14) causes the formation of a seven-membered hydrogen bond involving the ring B carbonyl (shift

⁶ Allinger and DaRooge, Tetrahedron Letters, 1961, 19, 676; J. Amer. Chem. Soc., 1962, 84, 4561.

Lehn, Levisalles, and Ourisson, Bull. Soc. Chim., 1963, 1096.

 ⁸ Brooks, Eglinton, and Magrill, J., 1961, 308.
⁹ Cairns and Eglinton, *Nature*, 1962, 196, 535.

to 1672 cm.⁻¹ in CCl₄) and the ring D hydroxyl (Tables 1 and 2, and Fig. 1). When both acetate groupings are replaced by hydroxyls, as in dihydroisocedrelone (compound 16), the ring B carbonyl absorption appears to shift to much lower frequency (1623 cm.⁻¹ in CCl₄) and two hydroxyl absorptions are observed at 3415 and 3466 cm.⁻¹ (Fig. 1), and hence both hydroxyl groups require to be intramolecularly hydrogen bonded to the carbonyl

FIG. 1. Absorptions in the hydroxyl and carbonyl stretching regions. A, Dihydro-cedrelone (8); B, dihydroisocedrelone acetate (14); and C, dihydroisocedrelone (16) in carbon tetrachloride (full line) and bromoform (broken line). Solutions in carbon tetrachloride in 2 cm. (hydroxyl region) and 5 mm. (carbonyl region) cells; bromoform, 0.47 mm. cells. Concentrations: for carbon tetrachloride solutions compounds 8 and 16 were 1.5 and 1.3 mm respectively while the rest were saturated solutions.

FIG. 2. Projections of Dreiding models of compounds 8 and 16. Thickened lines indicate nearest side of the molecule and dotted lines the hydrogen bonds.

function in ring B. This is illustrated in the planar projection of the Dreiding model shown in Fig. 2. The planar five-membered ring hydrogen bond of the diosphenol group exists as it does in dihydrocedrelone (compound 8, Fig. 2), but the seven-membered ring formed by the intramolecular hydrogen bond involving the ring D hydroxyl must be twisted. Measurements with the model give an $O \cdots O$ distance for this latter hydrogen bond of *ca.* 2.8 Å, the dihedral angle formed by the bonds linking $C_{(17)}$, $C_{(15)}$, and $O_{(4)}$ as 45°, and the angle made by the O-H bond with the line joining the two oxygen centres as 15°. Once again the stereochemistry must be favourable to hydrogen-bond formation, although the breadth of the absorption band is much greater than that of the diosphenol system, suggesting a greater degree of conformational freedom. However, the ring B carbonyl is actually at a slightly lower value when bonded singly by the ring D hydroxyl rather than by the diosphenol hydroxyl itself (e.g., compounds 13 and 6, respectively; a more closely matched pair of compounds was not available). An interesting and related example of a hydrogen bond closing a seven-membered ring has been provided by Wall et al.; ¹⁰ the compound is a steroid derivative, 3β -acetoxy-4'-hydroxy-2'-methyl-16,17-butano-5 α androsta-1',3',16-trien-12-one, and the oxygen atoms of the phenolic hydroxyl and the cyclohexanone-type carbonyl are held by the rigid framework. The hydrogen bond is quite strong $\lceil v(OH) = 3235$ cm.⁻¹ and v(CO) = 1685 cm.⁻¹ in CS₂ in spite of the enforced aplanarity of the carbon-oxygen bonds.

Also illustrated in Fig. 1 are the results obtained with bromoform solutions (broken lines). These measurements support our view that the strong band at 1623 cm^{-1} (in CCl₄) exhibited by dihydroisocedrelone (compound 16) corresponds to the carbonyl (ring B)

FIG. 3. Absorptions in the hydroxyl and carbonyl stretching regions. A, The norketone (19); B, isocedrelone acid lactone (22); and C, methyl isocedrelonate (21). Solutions in carbon tetrachloride in 2 cm. (hydroxyl region) and 5 mm. (carbonyl region). Concentrations for compounds (19), (22), and (21) were 1.67, 1.72 mM, and saturated respectively.

which is hydrogen bonded by both hydroxyls. If the bands at 1658 and 1623 cm.⁻¹ had been mutually involved in Fermi resonance or vibrational coupling, then change of solvent would have altered their relative intensities.¹¹ We assign the band of medium strength at 1658 cm.⁻¹ (in CCl₄) to a double-bond stretching vibration (see below).

Absorption data have been obtained for solutions of hexahydrocedrelone (compound 9) and of isocedrelone acetate (compound 13) in carbon tetrachloride-diethyl ether solvent mixtures (up to 50% ether by volume). No marked changes were observed in the intensity, breadth, or position of the hydroxyl and carbonyl absorptions. Diethyl ether normally behaves as a Lewis base,¹² but it is evident that the intramolecularly bonded hydroxyls in these particular molecules are not readily accessible; in compound 9 the methyl groups on position 4 lie very close to the diosphenol hydroxyl and may well prevent approach of the solvent molecules while in both compounds 9 and 13 the intramolecular hydrogen bonds confer some degree of solvent insensitivity. Even so, some indications of intermolecular hydrogen bond formation could be discerned at the higher ether concentrations; thus, there was a new, very broad and low absorption in the hydroxyl region and there was some reduction in the intensity of the intrabonded carbonyl of ring B relative to that of the ring A carbonyl.

Wall, Serota, Kenney, and Abernethy, J. Amer. Chem. Soc., 1963, 85, 1844.
Cairns, Eglinton, and Gibson, Spectrochim. Acta, 1964, 20, 31.

¹² Brown, Eglinton, and Martin-Smith, Spectrochim. Acta, 1963, 19, 463.

Contraction of ring B to a five-membered system, as in compound 17 (III), raises the carbonyl stretching frequency to 1758 cm.⁻¹ (in CCl₄), but introduction of a hydroxyl into ring D, as in compound 19 (IV; R = H; Table 1 and Fig. 3), gives rise to another seven-membered intramolecular hydrogen bond and ν (CO) falls to 1718 cm.⁻¹ with ν (OH) at 3470 cm.⁻¹ (all in CCl₄).

Several different intramolecular hydrogen bonds are possible in compound 21 (V; Tables 1 and 2 and Fig. 3). Our tentative conclusion is that the ring B hydroxyl is bonded to the carbonyl of the ester grouping while the ring D hydroxyl is "free." Similarly we conclude that compound 22 (VI; Tables 1 and 2 and Fig. 3) shows the presence of a five-membered intramolecular hydrogen bond between the hydroxyl group and carbonyl of the lactone ring.

In summary, the values quoted in Tables 1 and 2 and summarized in Table 3 illustrate the constancy of both v(CO) and v(OH) when certain intramolecular situations are held relatively constant. Similarly, certain minor changes in molecular structure produce consistent changes in v(CO) and v(OH), in so far as overlapping permits accurate assignment of bands. Two types of intramolecular hydrogen bond provide the chief interest: the planar five-membered diosphenol system, and the twisted seven-membered system. In both cases, the small solvation shifts may be due to the inability of the solvent molecules such as chloroform and diethyl ether to approach the acceptor sites. The small, but definite, upward shift (CCl₄ to CHCl₃) of the diosphenol hydroxyl frequency is especially intriguing as the shift is normally downward for a phenolic hydroxyl, for example.¹²

The assignments for the stretching absorptions of the carbon-carbon double bonds, v(C=C), are less complete than those of the carbonyl and hydroxyl groups (Table 2). The $\Delta^{1,2}$ absorption has not been located and it is presumed to be of low intensity; the ring A enone system is known ¹³ to be non-planar. By contrast, the absorption due to the $\Delta^{5,6}$ -diosphenol double bond is quite prominent (medium strength, where a carbonyl is termed strong) and is at about 1627 ($\varepsilon \sim 150$), 1612 ($\varepsilon \sim 100$), and 1622 cm.⁻¹ for the cedrelone diosphenol itself, the acetate, and the methyl ether, respectively. The same absorption is harder to locate in the isocedrelone series where there is an additional double bond in the 13,17 position. The medium-strength absorptions near 1637 cm.⁻¹ in the ring B and D diacetate is presumably due, in part at least, to the 5,6-double bond, but in the free hydroxy-compounds the 7-ketone carbonyl absorption moves into this region and definitive assignments are not feasible. Conceivably, the band near 1658 cm.⁻¹ could represent the $\Delta^{13,17}$ bond, with the $\Delta^{5,6}$ absorption hidden within the strong carbonyl band at 1623 cm.⁻¹.

The authors thank Mrs. F. Lawrie for recording the infrared spectra and for her assistance in processing the data. We thank Professor R. A. Raphael, F.R.S., for his interest. One of us (T. C.) acknowledges a Post-graduate Scholarship awarded by the Coal Industry Social Welfare Organisation, and another (S. G. McG.) to the D.S.I.R. for a Maintenance Grant.

CHEMISTRY DEPARTMENT, THE UNIVERSITY, GLASGOW W.2. [Received, March 17th, 1964.]

¹³ Katritzky and Ambler, "Physical Methods in Heterocyclic Chemistry, Vol. II," Academic Press, New York, 1963, p. 203.